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Abstract

This paper covers our investigation into the use of
machine learning techniques to classify 350 samples
of accelerometer data collected from a multi-rotor
unmanned aerial system. We use the Fast Fourier
Transform of the data to produce a spectrum in the
frequency domain. We then investigate various fea-
tures that may be used to characterise this data ef-
ficiently and apply various standard classification al-
gorithms to the dataset. In the end, we gain accura-
cies of xx% when using binary classification and xx%
when using multi-class classification.

1 Introduction

There has been a sharp increase in the popularity of
unmanned aerial systems (UAS) that are built and
flown by hobbyist pilots. The popularity of these
aircraft has been driven by three underlying trends:
1) the growth and popularity of open source hardware
and software (e.g. the Arduino platform or ROS, the
robotics operating system), 2) the maker movement
(e.g. 3D printing) and 3) the availability of low cost
sensors (e.g. the inertial measurement units which
are used by nearly every smartphone). These allow
hobbyists to assemble, economically, aircraft in their
own homes. The most popular type of aircraft design
amongst hobbyists is the versatile multi-rotor vertical
take off and landing aircraft. These typically have
3 or more arms attached to small electric motors.
Control is similar to a helicopter but, coupled with
an autopilot running a basic loop feedback controller,
is easier for an untrained pilot.

The inherent versatility and low cost of this design
is disruptive to the status quo of large, military grade
UAS. Thus, as these aircraft have become more ca-
pable and robust, there has been an increase in the
number of commercial entities formed who are at-

tempting to build products and services based around
these low cost vehicles. While commercial operation
of these aircraft is currently prohibited, there is a fed-
eral mandate for the Federal Aviation Administration
(FAA) to have rules permitting businesses to operate
these in place by 2015. However, air travel within the
national airspace is incredibly safe - due to the strict
regulations and rules that must be followed by enti-
ties operating in all but the least congested class of
airspace. It is unlikely that the legalisation of UAS
will come without similarly restrictive requirements
surrounding safety and operation.

This is directly at odds with the hacker mindset
that is used to build disruptive technologies such as
this. While the use of open source software and hard-
ware has accelerated the development of new features,
the fast pace of change arguably leaves these systems
open to complex failures that, in the context of a high
powered flying aircraft, can often have extreme, un-
desirable, collateral damage. Therefore, we attempt
to use our newly acquired machine learning knowl-
edge to further the development of a structural health
monitoring system for UAS that can use this data to,
at the very least, ascertain whether or not it is safe
to fly.

We use data collected as part of a Master’s project
where a system using accelerometers mounted to the
arms of an accelerometer was built. This approach is
used for other complex mechanical systems such as jet
engines, helicopter gearboxes and various large scale
industrial motors but has not been used for a small
UAS previously. The frequency-domain data pro-
duced by this system characterise vibration in three
dimensions and show, clearly, the effects of mechani-
cal failure.

Section 2.1 gives a brief overview of the system
itself and section 2.2 characterises the data that was
collected. In section 3 we describe the various feature
vector components we considered and in section 4 we



describe the various approaches we took to classify
our data. Our results are discussed in section 5 and
we conclude with an overview of the limitations of our
project and suggestions for future work in section 6.

2 Data Collection

Despite the multitude of sensors onboard current
UAS designs, there is actually very little data re-
ported back which can be used to detect problems
with the UAS. Sensors typically detect the position
of the aircraft, the current battery voltage and the
status of the radio link. Fail-safes can be triggered
in the autopilot which cause the UAS to return to
a known home location in various error conditions -
such as a low battery, lost radio link or if the UAS
breaches a pre-programmed geographic fence. In or-
der to detect mechanical failures in flight, additional
data is needed.

2.1 System Design

Accelerometers are used here since the data they pro-
vide is the most versatile and can be used to charac-
terise multiple types of mechanical failure. We con-
sider a handful of failures here based on the typical
construction of a multi-rotor UAS. As mentioned pre-
viously, these have a number of arms which are con-
nected by a central plate (upon which the autopilot
and radio hardware are usually affixed). At the end
of each of these arms is an electric motor, typically
brushless, that is attached to a propeller. Any single
component just described can fail without collision.
For instance, propellers may be chipped or any of
the screws that are used to connect components to-
gether may work themselves loose. This results in
inadequate control performance and, at worst, may
cause the aircraft to stop flying altogether. Each of
these failures causes various forms of vibration which
is easily picked up by the accelerometer.

Figure 1 shows this system in action. In this initial
version of the system, collected data is transmitted
wirelessly to a laptop which logs the data for later
processing. Preferably this data would be fed straight
into the autopilot where it could be tested against
when arming or disarming the vehicle.

2.2 Data Description

The data used for this project was collected from a
single UAS arm with a motor attached. This arm was
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Figure 1

tethered to a bench. The motor was made to spin up
under various normal and erroneous conditions and
data was collected over a 10 second interval. The
pulse width was also varied (the amount of time each
motor is powered on for) from 900 ps to 2300 wus.
The higher this time, the more power is supplied to
the motor and the faster it spins. Data is collected
for when there is:

e 1o propeller (unloaded)

e a propeller (loaded)

a propeller mounted on a loose pylon

a propeller mounted on a loose motor

a broken propeller

The accelerometers used operate at 1 KHz (i.e.
1,000 points a second). Therefore 10 sets of data of
1,000 points each were collected for each failure mode
and pulse width combination. Each of these sets of
data was run through the Fast Fourier Transform al-
gorithm to convert the data from the time domain to
the frequency domain. This gives us data represent-
ing the magnitude of vibration at various frequencies
for the x, y and z directions.

Table 1 shows a summary of the data that was col-
lected. Note that the struck out pulse widths are tests
that could not be performed for safety reasons. All-
in-all, we have 35 different combinations of failure
mode (including normal operation - i.e., no failure)
and pulse width, with 10 samples for each combina-
tion.



No load Loaded Loaded Loaded Loaded

No issue  No issue Loose pylon Loose motor Broken propeller
800 800 800 800 800
900 900 900 900 900 Low speed
1600 1600 1600 1600 1600
1700 1700 1700 1790 1700 Medium speed
2200 2200 2200 2200 2200
2300 2300 2300 2300 2300 High speed

Pulse width (us)

Table 1: Overview of data collected
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Figure 2: 900us pulse width no issue FFT Figure 4: 900us pulse width loose motor FFT
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Figure 3: 900us pulse width broken propeller FFT Figure 5: 900us pulse width loose pylon FFT



3 Feature Vector Design

The idea of performing classification based on fre-
quency domain data is very well tested. Primarily the
data used is derived from audio, where the computed
FFT gives the frequency distribution of a sample of
music or voice [4].

3.1 Preprocessing

Typically when classifying audio, it is necessary to
preprocess the data to normalise for differences in vol-
ume (due to distance from the source) and to remove
silence (for example, during speech). However, our
data was collected in a controlled environment such
that this it not strictly necessary - the accelerome-
ter was a fixed and constant distance away from the
source of vibration and the motor was on continu-
ously for the duration of the test.

3.2 Dimensions

We considered working with x, y and z axis data -
although give more weight to the y and z axes because
vibrations typically happen laterally for each arm (i.e.
y axis) or vertically (i.e. z axis).

3.3 Spectral Features
3.3.1 Mean Magnitude

We calculate the basic mean magnitude of our fre-
quency spectrum which characterises how much over-
all vibration there is.

3.3.2 Peak to Mean Ratio

We use the ratio of the magnitude of the top peak to
the mean magnitude as a feature. This lets us identify
the relative divergence of the peak. For example, if
the peak value is high but so is the mean value, this
suggests that this is a very noisy set of data. However,
if the peak value is high but the mean value is low,
this suggests that the peak is exceptional. Thus a
high peak to mean ratio should mark when there is a
very strong vibration at a single peak frequency.

3.3.3 Number of Prominent Peaks

The number of prominent peaks is a potentially inter-
esting feature to incorporate. We noticed that some
of the erroneous conditions resulted a different num-
ber of peaks in the data. We calculated the prominent

peaks by counting the number of peaks larger than
three standard deviations from the mean of the data
set.

3.3.4 Spectral Centroid, Spectral Rolloff

The spectral centroid is the magnitude weighted
mean of the frequency spectrum for each signal (or
alternatively known as “the centre of mass” of a spec-
trum. The spectral rolloff point is similar, except
it considers the point at which 85% of the power is
at lower frequencies, essentially measuring how much
the power spectrum is skewed to the right. This fea-
ture has more pertinence for audio signals due to the
way human ears work. We therefore chose to use the
spectral centroid as a feature.

3.3.5 Spectral Bandwidth

This is the absolute difference between the highest
and lowest frequencies in our frequency spectrum. In
our data, the FFT output is fixed between 0 and 500
Hz and there is a modest amount of activity at each of
these frequencies. This is most likely because the full
spectrum is limited by the output of the accelerom-
eter used and it produces noise at all frequencies.
Therefore, we disregard this is a feature.

3.4 Sub-band Analysis

A common method of composing features for classi-
fication of audio is to perform sub-band analysis [1] -
where the overall frequency spectrum is broken down
into bands that are deemed pertinent.

3.4.1 Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCC) are re-
garded as one of the best performing ways to sum-
marise audio that is classified by humans [1]. MFCCs
are computed from the power cepstrum of a sound
and involve taking sampling the original FFT at fre-
quencies taken from the mel scale. The mel scale
is a distribution of pitches that has been empirically
determined to be considered as equally spaced pitch
bands by humans. Intuitively, this would help when
classification of the audio in question is down to the
human listeners. However, for our particular prob-
lem, this is unlikely to work well since our classifica-
tion does not depend on a human listener.



3.4.2 Spectral Histogram

For our particular data, we do not perform any spe-
cific sub-band analysis since the pertinent bands tend
to shift with motor and propeller choice, as well as
with the pulse width. We do however use a spectral
histogram that summarises the full frequency spec-
trum. This allows us to reduce the dimensionality of
our feature vector while still characterising the dis-
tribution for classification.

3.5 Temporal Features

It’s worth noting that most feature vectors for au-
dio use typically include some kind of temporal fea-
ture that ” capture the temporal evolution of a signal”
[1]. This is important for audio identification where
the signal is not continuous and where the temporal
aspect is crucial to proper identification or classifica-
tion. However, since we again have a controlled set of
data, we do not attempt to use this feature. Theoret-
ically it might prove useful for situations where there
is a sudden change, such as where a propeller strikes
an object and suddenly comes to a halt. However,
this is a rare occurrence.

4 Classification Algorithms

Based on common approaches to classification of fre-
quency based data [1] [3] [2], we attempted to classify
our data via support vector machines, K-NN classifi-
cation, decision trees, random forests, and AdaBoost.

For simplicity, we primarily collected results for bi-
nary classification first (where 0 is working and 1 is
not working) and then tried multi-class classification
(for 4 distinct classes: working, loose pylon, loose
motor, broken propeller).

4.1 Implementation Details & Cross
Validation

The data was provided to us as multiple comma sep-
arated value text files. These were parsed and loaded
into SQLite. We used the popular scikit-learn ma-
chine learning library in python.

Due to the lack of a separate test set, we used k-
fold cross validation to gauge the accuracy of each
of our approaches. The results below are shown for
where k£ = 5.

5 Results

Table 3 shows our overall results. We managed to
reach a maximum test accuracy of 99.6% using a
random forests classifier with 10 estimators.

We experimented with various combinations of
feature vectors (results of which are omitted, for
brevity), in particular the bin size of histograms. We
found this had a noticeable effect on classification ac-
curacy - too large (i.e. few bins) or too small (i.e.
many bins) would result in more misclassifications.
For reference, table 2 shows the classification accu-
racy when using purely the raw frequency spectrum
values as features. This works surprisingly well for
the k-NN classifier but poorly for other algorithms -
perhaps due to its high dimensionality. We suspect
that with less clean data, using the raw frequency
spectrum values as features would not work as well
since the data would not necessarily be normalised to
the same degree.

SVM 65.2

k-NN 98

Decision Trees 87.6
Random Forests 91

Adaboost 84

Table 2: Classification accuracy when using raw fre-
quency spectrum as features.

Altering the SVM kernels showed us that RBF ker-
nels gave us the best results. Linear and polynomial
kernels took far too long to train. We also varied the
hyper parameter C but the default value of 1 proved
to work mostly well enough.

Varying the weights accorded to samples when clas-
sifying using our k-NN classifier had little effect on
the overall accuracy - presumably because the values
clustered together fairly closely.

Given the immediately obvious success of the ran-
dom forests classifier, we collected results for varying
numbers of estimators, shown in table 77. 100 esti-
mators gives us the best accuracy of 100%!

6 Conclusion & Limitations

Ideally we would like to be able to perform the classi-
fication in real-time. While our results indicate that
random forest have the best performance, the mem-
ory overhead required to store these trees may not be
ideal for embedded computers. Thus, we may have



Number of Bins 0 10 50 100
SVM 65.2 704 81.8 96

k-NN 92 92 92 92

Decision Trees 92.8 95.6 94.4 90.8
Random Forests 95.2 988 99.6 97.4
Adaboost 89.6 94.4 96.2 93

Table 3: Overall results: average test set classification accuracy

n_estimators Training Test
1 95.4 88.6

2 94.4  90.6

5 99.6 96.8

10 100 99.2

20 100 99.4

50 100 99.6

100 100 100

200 100 99.2

Table 4: Number of estimators for random forest clas-
sifier: effect on average training and test set accuracy

to consider optimizing parametric classification meth-
ods that utilize less memory.

Additionally, we would like to extend this binary
classification of the data to a multi-class problem.
Instead of classifying the drone as functional or non-
functional, it would be more ideal to classify what
issue is causing the unmanned aerial vehicle to not
function properly. This would require a larger set of
data for each category to improve classification accu-
racy.

Here we have shown it is possible to very accurately
classify the data collected through this setup to diag-
nose mechanical failures on an unmanned aerial sys-
tem by using standard frequency spectrum features.
These features and the algorithms used are very sim-
ilar to other classification problems in the frequency
domain - such as classification of music.

To ensure the robustness of this classification, more
data needs to be collected whilst flying - in particu-
lar while multiple motors are running concurrently.
These may introduce vibrations at various harmonic
frequencies which may require altered feature vectors
or better normalisation (or pre-processing) to main-
tain classification accuracy.
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